An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma.
نویسندگان
چکیده
Glioblastoma (GBM) is thought to be driven by a subpopulation of cancer stem cells (CSCs) that self-renew and recapitulate tumor heterogeneity yet remain poorly understood. Here, we present a comparative analysis of chromatin state in GBM CSCs that reveals widespread activation of genes normally held in check by Polycomb repressors. These activated targets include a large set of developmental transcription factors (TFs) whose coordinated activation is unique to the CSCs. We demonstrate that a critical factor in the set, ASCL1, activates Wnt signaling by repressing the negative regulator DKK1. We show that ASCL1 is essential for the maintenance and in vivo tumorigenicity of GBM CSCs. Genome-wide binding profiles for ASCL1 and the Wnt effector LEF-1 provide mechanistic insight and suggest widespread interactions between the TF module and the signaling pathway. Our findings demonstrate regulatory connections among ASCL1, Wnt signaling, and collaborating TFs that are essential for the maintenance and tumorigenicity of GBM CSCs.
منابع مشابه
RYK promotes the stemness of glioblastoma cells via the WNT/β-catenin pathway
Glioblastoma multiforme (GBM) is characterized by a strong self-renewal potential and a poor differentiation state. Since receptor-like tyrosine kinase (RYK) activates the WNT/β-catenin pathway essential for cancer stem cell maintenance, we evaluated its contribution in conferring stemness to GBM cells. Here, we report that Ryk (related-to-receptor tyrosine kinase), an atypical tyrosine kinase ...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملThe evolving landscape of glioblastoma stem cells.
PURPOSE OF REVIEW Recent advances in the role of cancer stem cells (CSCs) in glioblastoma will be reviewed. RECENT FINDINGS In the decade since the description of brain tumor CSCs, the potential significance of these cells in tumor growth, therapeutic resistance, and spread has become evident. Most recently, the interplay between CSCs, tumor genetics, and the microenvironment has offered pote...
متن کامل/Bcl9l Are Critical for Wnt-Mediated Regulation of Stem R l Traits in Colon Epithelium and Adenocarcinomas
nloaded onical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenere, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of s, which in Drosophila is required for Armadillo/β-catenin signaling. Conditional ablation of Bcl9/Bcl9l in estinal epithelium, where the essential role of Wnt signaling in e...
متن کاملAberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma
Glioblastoma recurrence after aggressive therapy typically occurs within six months, and patients inevitably succumb to their disease. Tumor recurrence is driven by a subpopulation of cancer stem cells in glioblastoma (glioblastoma stem-like cells, GSCs), which exhibit resistance to cytotoxic therapies, compared to their non-stem-cell counterparts. Here, we show that the Cox-2 and Wnt signaling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 3 5 شماره
صفحات -
تاریخ انتشار 2013